Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling.
نویسندگان
چکیده
PURPOSE The purpose of this study was to develop a methodology to quantitatively measure the thorax-to-abdomen breathing ratio from a 4DCT dataset for breathing motion modeling and breathing motion studies. METHODS The thorax-to-abdomen breathing ratio was quantified by measuring the rate of cross-sectional volume increase throughout the thorax and abdomen as a function of tidal volume. Twenty-six 16-slice 4DCT patient datasets were acquired during quiet respiration using a protocol that acquired 25 ciné scans at each couch position. Fifteen datasets included data from the neck through the pelvis. Tidal volume, measured using a spirometer and abdominal pneumatic bellows, was used as breathing-cycle surrogates. The cross-sectional volume encompassed by the skin contour when compared for each CT slice against the tidal volume exhibited a nearly linear relationship. A robust iteratively reweighted least squares regression analysis was used to determine η(i), defined as the amount of cross-sectional volume expansion at each slice i per unit tidal volume. The sum Ση(i) throughout all slices was predicted to be the ratio of the geometric expansion of the lung and the tidal volume; 1.11. The Xiphoid process was selected as the boundary between the thorax and abdomen. The Xiphoid process slice was identified in a scan acquired at mid-inhalation. The imaging protocol had not originally been designed for purposes of measuring the thorax-to-abdomen breathing ratio so the scans did not extend to the anatomy with η(i) = 0. Extrapolation of η(i)-η(i) = 0 was used to include the entire breathing volume. The thorax and abdomen regions were individually analyzed to determine the thorax-to-abdomen breathing ratios. There were 11 image datasets that had been scanned only through the thorax. For these cases, the abdomen breathing component was equal to 1.11 - Ση(i) where the sum was taken throughout the thorax. RESULTS The average Ση(i) for thorax and abdomen image datasets was found to be 1.20 ± 0.17, close to the expected value of 1.11. The thorax-to-abdomen breathing ratio was 0.32 ± 0.24. The average Ση(i) was 0.26 ± 0.14 in the thorax and 0.93 ± 0.22 in the abdomen. In the scan datasets that encompassed only the thorax, the average Ση(i) was 0.21 ± 0.11. CONCLUSIONS A method to quantify the relationship between abdomen and thoracic breathing was developed and characterized.
منابع مشابه
Breathing movements of the chest and abdominal wall in healthy subjects.
BACKGROUND Physical assessment of breathing is an important component of physical therapy evaluations. However, there are no standardized reference values of breathing movements available for use in clinical practice. The purpose of this study was to determine the 3-dimensional distances of observational points on the thorax and abdomen during breathing in healthy subjects and to assess the ef...
متن کاملPrediction Framework for Statistical Respiratory Motion Modeling
Breathing motion complicates many image-guided interventions working on the thorax or upper abdomen. However, prior knowledge provided by a statistical breathing model, can reduce the uncertainties of organ location. In this paper, a prediction framework for statistical motion modeling is presented and different representations of the dynamic data for motion model building of the lungs are inve...
متن کاملExtraction of Respiratory Signal Based on Image Clustering and Intensity Parameters at Radiotherapy with External Beam: A Comparative Study
Background: Since tumors located in thorax region of body mainly move due to respiration, in the modern radiotherapy, there have been many attempts such as; external markers, strain gage and spirometer represent for monitoring patients’ breathing signal. With the advent of fluoroscopy technique, indirect methods were proposed as an alternative approach to extract patients’ breathing signals...
متن کاملCoordination between ribs motion and thoracoabdominal volumes in swimmers during respiratory maneuvers.
This work aimed to verify if swimmers present better chest wall coordination during breathing than healthy non-athletes analyzing the correlation between ribs motion and the variation of thoracoabdominal volumes. The results of two up-to-date methods based on videogrammetry were correlated in this study. The first one measured the volumes of 4 separate compartments of the chest wall (superior t...
متن کاملRespiratory motion correction in prostate cancer positron emission tomography: A study on patients and phantom simulation
Introduction: To investigate the effects of breathing cycle and tree diaphragm motions on prostate cancer tumors standard uptake value (SUV) during positron emission tomography (PET) and to correct it. Materials and methods: Respiratory motion traces were simulated on the common patient breathing cycle and tree diaphragm motio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 40 6 شماره
صفحات -
تاریخ انتشار 2013